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COMPUTING THE DISCRIMINANTS 
OF BRAUER'S CENTRALIZER ALGEBRAS 

PHIL HANLON AND DAVID WALES 

ABSTRACT. This paper discusses a computational problem arising in the study of 
the structure theory of Brauer's orthogonal and symplectic centralizer algebras. 
The problem is to compute the ranks of certain combinatorially defined matrices 
Zm ,k(x) (these matrices are presented in ?2). This computation is difficult 
because the sizes of the matrices Zm, k (x) are enormous even for small values 
of m and k . However, there is a great deal of symmetry amongst the entries 
of the matrices. In this paper we show how to design algorithms that take full 
advantage of this symmetry, using the representation theory of the symmetric 
groups. We also present data collected using these algorithms and a number of 
conjectures about the centralizer algebras. 

1. INTRODUCTION 

Early in this century invariant theorists began to study the commuting alge- 
bras of the tensor powers of the defining representations for the classical groups 
(see Weyl [19]). These algebras are defined in the following way. Let G be a 
classical group, let V be its defining representation, and let Tf V be the fth 
tensor power of V. The group action of G on V lifts to the diagonal action 
of G on TfV, defined by g .(v 1 V2? (..Vf) = (gv 1)(gV2) *...(gVf). 

Define the commuting algebra, EndG(Tf V), of this action to be the algebra of 
all linear transformations of Tf V which commute with this action of G. 

The first important result was due to Schur [16] who studied the G = 

Gl(n, C) case. He showed that there is a surjective algebra homomorphism 
from C Sym(f) onto EndGl(nl C) (TC:n), which is an isomorphism for f < n. 
He went on to identify the kernel of this homomorphism, thus giving a complete 
description of the centralizer algebra EndGl(nf C) (Tf Cn) . 

The next cases considered were the orthogonal group, G = O(n, R), and the 
symplectic group Sp(2n, R). In a 1937 paper, Richard Brauer [3] defined two 
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algebras a<(X) and Sq)x) indexed by a positive integer f and a real indetermi- 
nate x. He also constructed surjective algebra homomorphisms 

(P 
n) ?Sn) __ End ~ i(fX ) 

f f EnO(nlR) (T R) 

and 

(2m) ,(2m) Em) 
Yf.f EndSp(2m, R) (Tf 

and he showed that these homomorphisms are isomorphisms if n and m are 
large enough. He failed to give a description of the kernels of the maps (o -n) 

and V2 in the cases where these maps are not isomorphisms. 
In the hope of finding an explicit description of these kernels, the present 

authors began the study of the algebra structures of V,(x) and 5(x) for x f ~~f 
an arbitrary real. One simplification of the problem comes in noting that the 
algebras Vx(x) and 7>X) are isomorphic. So it was only necessary to study 
the algebra V (x) . The authors hoped to be able to describe the radical of V (x) f ~~~~~~~~~~~~~~~f 
and the matrix ring decomposition of _V(x)/Rad(GV(x)). 

In an earlier paper [7], the authors found the matrix ring decomposition of 
V(x)/Rad(G9(x)) and reduced the problem of finding the radical of - (x) to f f ~~~~~~~~~~~~~~~~f 
the problem of computing the ranks of certain combinatorially defined matri- 
ces Zm k(X) which are described in the next section. This paper concerns the 
computation of these ranks and the slightly weaker problem of computing the 
determinants of Zm k(x). These determinants, when considered in an appro- 
priate way, are discriminants of the Brauer algebras ks(x). 

The computational methods described in this paper make strong use of the 
representation theory of the symmetric groups. The paper is organized as fol- 
lows: ?2 describes in combinatorial terms the computations that need to be 
done, ?3 gives background information about representation theory, ?4 explains 
how to use this representation theory to construct algorithms, ?5 contains the 
result of computations that have been done by the authors, and ?6 contains pre- 
vious results about the radicals of the k x) as well as a number of conjectures f 
that are suggested by the data in ?5. 

We will assume familiarity with the standard notation, terminology, and the- 
orems from the representation theory of the symmetric groups. In particular, 
the reader will need to know the definition of a Littlewood-Richardson filling 
and the Littlewood-Richardson rule (see James [9, pp. 51-64] or Macdonald 
[14, pp. 68-73]). We write g for the number of Littlewood-Richardson 
fillings of [Al/J] having content q, and we write A F / to signify that A is a 
partition of 1. Other notation and terminology can be found in Macdonald 
[14]. 
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2. THE COMPUTATIONAL PROBLEM 

In this section we will define a class of square matrices Zm k(x) which are 
indexed by positive integers m and k and which have entries that are poly- 
nomials in x. Our computational problem will be to compute the rank of 
Zm k (x) for every complex number x . The determinant of Zm k (x) is known 
to be nonzero as a polynomial in x, so the rank of Zm k (x) is full except at 
a finite number of values of x (those x that are roots of det(Zm k(x))). So 
our computational problem breaks into two parts: 

(1) Compute the roots of det(Zm k (X)) . 
(2) For each root r, compute the rank of Zm k (r). 

Definition 2.1. Let m and k be nonnegative integers. An m, k partial 1-factor 
is a graph with m + 2k points and k lines which satisfies: 

(C1) Every point has degree 0 or 1. 
(C2) The m points of degree 0 are labelled with the numbers 1, 2, ..., m. 

We always use f to denote m + 2k, and we use lower case Greek letters 
a 1' 2' ... to denote partial 1-factors. The points of degree 0 in a partial 
1-factor 6 are called the free points of 6. Lastly, we let Bm k denote the set of 
m, k partial 1-factors and we let Vm k be the complex vector space with basis 
Bm k. The notion of a partial 1-factor was introduced in [7], where there is a 
discussion of how they are related to the Brauer centralizer algebras. 

Let 6, and 62 be elements of Bm k. It is easy to check that the union of 
61 and 62 is a graph consisting of some number y(61, 62) of cycles together 
with m paths P15 ..., Pm . If u is an endpoint of Pi, then u is a free point 
of either 61 or 62. Hence, the endpoints of each path are labelled. We say 61 
and 62 are consistent if each path of 61 U 62 has the property that its endpoints 
have the same label. Otherwise, 61 and 62 are inconsistent. 

Definition 2.2. Let m and k be nonnegative integers. Define a matrix Zm k (x) 
with rows and columns indexed by Bmk. For 61, 62 E Bmk, let the 61 62 
entry of Zm k(X) be 

f XY(61b 2) if 6d and 62 are consistent, 
(Zenfk(x))l 62 = 0 if 61 and 62 are inconsistent. 

Note that each diagonal entry of Zm k(x) is Xk and that every off-diagonal 
entry is either 0 or Xe with e < k. So the determinant of Zm k (x) is a 
nonzero polynomial in x of degree k IBm k . 

As an example, consider f = 4 and m = 2. In this cease, the matrix Zm k (X) 
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is 12 by 12. An ordered basis for Bm k is the set below: 

1 2 
* 0 *0- 

2 1 

1 2 

2 1 

1 2 

2 1 

1 2 
* .- 0 

2 1 
* *_. 0 

1 2 

2 1 

1 2 

..0 0 2 1 

The matrix Zm k(x) with respect to this basis is given by 

~X 0 1 0 0 1 1 0 0 1 0 0~ 
0 x 0 1 1 0 0 1 1 0 0 0 
1 0 x O 1 0 1 0 0 0 0 1 
0 1 0 x O 1 0 1 0 0 1 0 
0 1 0 x O 0 1 0 0 1 
1 0 0 1 0 x 0 0 0 1 1 0 

21(X 
1 0 1 0 0 0 X 0 1 0 1 0 =2lX 

0 1 0 1 0 0 0 x 0 1 0 1 

0 1 0 0 1 0 1 0 x 0 1 0 

1 0 0 0 0 1 0 1 0 x 0 1 

1 0 0 1 0 1 1 0 1 0 x _ 

0 0 1 0 1 0 0 1 0 1 0 x 

As stated earlier, our computational problem is to first compute the roots of 
det(Zm k(x)) and then for each root r to compute the rank of Zm k(r) . This 
appears to be an intractable computation for all but a few small values of m 
and k. It is easy to check that the size of Bm k (which is the length of each 
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row and column of Zm k(X)) is 

IBm, k = (m + 2k)!/2 k!. 

Even for small values of m and k, the matrices Zm k(x) are very large. More- 
over, they have entries which are polynomials in x, and they are not particularly 
sparse. 

However, there is a great deal of symmetry amongst the entries of Zm k(x). 
We will exploit this symmetry to design algorithms which will carry out our 
computation for some surprisingly large values of m and k. Our first step is 
to express the symmetries more explicitly. 

There are permutation actions of both Sym(f) and Sym(m) on the set 
Bmk. A permutation a in Sym(f) acts on a 1-factor 6 by permuting the f 
points of a and correspondingly permuting the vertex labels and edges. To be 
precise, if u is joined to v in 6, then au is joined to av in a6, and if z 
is a free point of 6 with label a, then az is a free point of a6 with label a. 
The group Sym(m) acts on Bm, k by changing the values of the labels. If r is 
in Sym(m) and u is a free point of 6 with label a, then u is a free point of 
dr6 with label 7za. The edges of 6 and 7r6 are identical. 

It is easy to see that these actions of Sym(m) and Sym(f) commute. Also, it 
is straightforward to check that Zm k (x) commutes with the actions of Sym(f) 
and Sym(m). Hence we have the following theorem. 

Theorem 2.3. The matrix Zm k(x) commutes with the action of Sym(f) x 
Sym(m) on Vm kay 

Theorem 2.3 tells us that many of the entries of Zm k(x) are identical, a fact 
which we would like to exploit when we compute the determinant of Zm k (x) . 
In the next section we review some facts about the representation theory of 
finite groups, and we state a theorem which tells us how to take full advantage 
of the symmetries expressed by Theorem 2.3. 

3. A TOOL FROM REPRESENTATION THEORY 

In this section we discuss a theorem from representation theory which will 
be the basis of our algorithm. To understand the statement and application of 
this result, the reader will need some background in the representation theory 
of finite groups. There are many excellent sources for this information, in par- 
ticular the books by Feit [6], Boerner [2], Curtis and Reiner [4], and Ledermann 
[12]. The reader will need a more sophisticated background in the representa- 
tion theory of the symmetric groups. We recommend the books by James [9] 
and James and Kerber [10]. 

We now state the main result of this section, which can be thought of as a 
constructive form of Schur's Lemma. This is a well-known result in represen- 
tation theory, although it is usually not stated in this kind of algorithmic form. 
The proof of this theorem is straightforward and we leave it to the reader. 
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Theorem 3.1. Let G be a finite group with irreducible representations . 
Xc. Let X be a representation of G on a complex vector space V which decom- 
poses into irreducibles as 

C 

i= 1 

Let Z be a linear transformation of V which commutes with the action of G. 
Then Z is similar to a matrix which is a direct sum over i of matrices Zi, where 
Zi is an mi x mi matrix repeated in the direct sum deg(qi) times. Moreover, 
Zi can be computed as follows: 

Step 1: Choose a complete set of primitive orthogonal idempotents 
{e(u): 1 < u < c, 1 < v < deg(qu)} in the group algebra CG 
Step 2: Find mi vectors v1, ..., Vm e V such that q$(e&')v1 . 

q$(e&))vm are linearly independent. 

Step 3: Let V<(') be the subspace of V spanned by q(e('))v1. 

&We~i)v 1. The space VI(') is Z-invariant and Z, is the restriction of 

z to 00 

Remark. Any multiple of e(i) will do just as well. 
There are two difficulties one encounters implementing the algorithm set out 

in Theorem 3.1. The first problem is to obtain a complete set of primitive 
orthogonal idempotents for the particular group G under consideration. This 
can be an insurmountable problem since these idempotents are in practice very 
difficult to compute. However, idempotents are known for some groups, and 
in particular for many groups that are likely to come up in practice. For our 
application we will need idempotents for the symmetric groups. These have 
been known since the time of Alfred Young. We present these idempotents and 
discuss some of their combinatorial properties below. 

The second problem one encounters with this algorithm is how to find the 
vectors v1, ..., Vm E V such that q$(e&')v1, ... , k(e&'W)v, are linearly in- 
dependent. This problem depends on the particular representation q under 
consideration. The authors know of no general tools for finding these vectors. 

We described Theorem 3.1 as a constructive form of Schur's Lemma. That 
comes from considering the case where / = Pi is irreducible. In this case, 
Schur's Lemma tells us that any matrix Z which commutes with 0 is a scalar 
matrix. One can compute the scalar by comparing v to Zv for any nonzero 
vector v. Theorem 3.1 generalizes this idea to representations / which are not 
irreducible. 

In our applications of Theorem 3.1 the group G will be either a symmetric 
group or a direct product of symmetric groups. We end this section with a 
brief description of the primitive orthogonal idempotents we will use for these 
groups. 
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Let G be the symmetric group Sym(f). It is well known that there is an 
indexing of the irreducible representations of G by partitions A of f such 
that the dimension of the irreducible XA corresponding to A is the number of 
standard Young tableaux (SYT) of shape A. If t is a standard Young tableau 
of shape A, let Ct and Rt denote the column stabilizer and row stabilizer of 
t, respectively. Let et be the element of the group algebra C Sym(f) given by 

e = Hh. E sgnZ(y)(y ) 
'i yhCt aERt 

where H hij is the product of the hook-lengths of A). The element et is called 
the Young symmetrizer indexed by t. It is well known that the set of et for 
t an SYT of shape A gives a complete set of orthogonal idempotents for the 
matrix ring in C Sym(f) corresponding to the irreducible x 

Let et be a Young symmetrizer and let 7r be a permutation in Sym(f). It 
turns out that the coefficient of 7r in et is -1, 0, or 1. Moreover, there is a 
combinatorial algorithm to determine this coefficient, which takes no more than 
>j (a2 + aj) operations, where aj is the number of elements in the jth column 
of t. We will denote this algorithm by COEF(7z, t) . We know of no reference 
where this algorithm is discussed explicitly. However, one can construct the 
algorithm by following the proof of Lemma 1.5.7 on p. 31 of James and Kerber 
[10]. 

4. COMPUTING THE BRAUER ALGEBRA DISCRIMINANTS 

We are now ready to explain how to use Theorem 3.1 to attack the compu- 
tational problem stated in ?2. In this section, m and k are fixed nonnegative 
integers and f = m + 2k . We will apply Theorem 3.1 with V being Vm k , with 
Z being Zm k(X), and with G being Sym(f) x Sym(m). Recall from ?2 that 
there is a natural action of G on V, and the matrix Z commutes with this 
action of G. We want to compute the rank and determinant of Z. The point 
of ?3 is that we can derive this information by computing with much smaller 
matrices Z. ,(x) which are indexed by the irreducible representations q9, 0 ,91 
of G. Theorem 3.1 gives an algorithm for computing the Z (x). Our next 
step in carrying out this algorithm will be to compute the size of Z (x) , i.e., 
the multiplicity of q9, 0 

,9# in Vm k . 

Theorem 4.1. Let j and A be partitions of m and f, respectively, and let 
m(ju, A) denote the multiplicity of q@ 0 9 in Vm k. Then 

m(, ) )= ga 
1F2k 
q even 

Proof. Let G be Sym(f) x Sym(m), let H be the subgroup 

(Sym(2k) x Sym(m)) x Sym(nm), 
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and let S be the subgroup of H given by 

S = {(U. C aCTa): 7 E Ak I a E Sym(m)}. 

Here, 52k denotes the hyperoctahedral group of k x k signed permutation 
matrices, which is considered to be a subgroup of Sym(2k) in the usual way. 

Note that G acts as a transitive permutation group on the set Bmk* So 
the action of G on Vm k is the induction of the trivial character e from the 
stabilizer of any A0 e Bm k to G. Choosing 

1 2 m 
AO v= *n * --- v 0 0 . 0 

we have that the stabilizer of AO is S. 
Using a theorem of Littlewood (see Macdonald [14, p. 45, ex. 5]) and some 

well-known facts about the structure of group algebras, we have 

inS (e) = 
J 3u J3?u 

)F-2k /F-m 
q even 

By the Littlewood-Richardson rule we have for each a , ju 

indH Op 
3 ,f X& 9,f) =EgA'u'l8 , 'P 9u 

which completes the proof. a 

At this point we can appreciate how much simplification Theorem 3.1 has to 
offer us. In the case m = 6, k = 3, 5f = 12, the original matrix Zm k(X) has 
dimension on the order of 10,000,000. Theorem 3.1 says that the matrix splits 
as a direct sum of matrices ZA ,u (x) of dimension m(,u, A)), each repeated f fA 
times. Using Theorem 4.1, one can show that the largest dimension of any of 
these matrices Zl to (x) is just 15. 

Now fix partitions ju F m and A F f. If ju is not contained in A, then 

Aflq = 0 for all , so m(,u, A) = O. Thus, we may assume that u c A. We will 
identify a particular idempotent e in the group algebra of G corresponding to 
the irreducible representation q9 ? qf. J To obtain this idempotent, first let so 
be the minimal standard Young tableau of shape [u. So: 

1 2 

(,ul + 1) (/tl + 2) (Al, + /2) 
so = 

(AlI+.. + /1-1 +l) .M r 

Next, let to be the standard Young tableau of shape A -which agrees with so on 
the intersection of A and ,u and which has the minimal filling of [Aiji] with 
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m + 1, ..., f. So, t0 looks like 

to= 
('U1 + -+ jai/l + 1 

(f -Ad+ 1) *f*a 

Let e be defined by e = et x es . We note that e is an idempotent in the 
group algebra of G corresponding to the irreducible Ad 0 ,f J 

Next we need to pick out vectors vl,. .., VM (M = m(, A)) in Vm k such 
that ev1, ... , evm are linearly independent. The formula for m(jt, A) given 
in Theorem 4.1 suggests how to choose the vi. According to the formula, we 
need one vi for each Littlewood-Richardson filling of [Al/J] with content q, 
where q is even. Our actual choice of vi will be put in terms of a certain 
1-1 correspondence between 1-factors on 2k points and lattice permutations of 
length 2k with even content. 

In the general case, our proof that the evi are linearly independent depends 
on a difficult technical lemma. Rather than obscure the exposition with these 
details, we will do an interesting special case here and briefly discuss the general 
case afterwards. 

Definition 4.2. We say the pair (R, ju) is j-extremal if [Al/J] has no pair of 
squares in the same row or the same column. 

For the rest of this section we assume that (R , u) is [-extremal. In this case 
the tableau to looks like 

m+1 

m+2 

so 

m+3 

f~~~~~~~ 
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Any lattice permutation of length 2k and shape I constitutes a Littlewood- 
Richardson filling of [l/#u], so for all I we have 

Thus, 
m(y,uA)= f,=1 I 3 ..(2k -1). 

77 even 

Hence the multiplicity m(/t, A) equals the number of 1-factors on 2k points. 

Note. For any pair (R, /u) we have god < fh. So in general, m(/u, A) < 
1 3.. (2k - 1). Equality is achieved if and only if (R, /t) is /u-extremal. 

We want to define a vector vA for each 1-factor A with 2k points. 

Definition 4.3. Let A be a 1-factor with 2k points. Define the m, k partial 
1-factor vA as follows: 

(1) vA has free points 1, 2, ..., m. The free point j has label j. 
(2) For every edge {u, v} of A we have the edge {m + u, m + v} of vA. 

The next lemma will not only show that the evA are linearly independent, it 
will also greatly streamline our computation. It is this result which is difficult 
to prove in the case of general pairs (R. u) . 

Lemma 4.4. Let (R, yu) be yu-extremal and define to, so as above. Let y, a, 2' 
and a' be in Ct , Rto, CS , and RS5, respectively (so, sgn(y)sgn(y')(ya, y'a') 
is one of the terms occurring in the idempotent e = et x es )9. Suppose that 

(YU, 2 a )vA = VA, 

where A and A are 1-factors. Then 

(1) A=A, 
(2) y and a both fix to/so pointwise. 
(3) y restricted to so equals y', and a restricted to so equals a'. 

In particular, {evA: A is a 1-factor with 2k points} is a basis for e Vm k 

Proof. Recall that y'a' acts on an m, k partial 1-factor by changing the la- 
bels on the free points by (y'a'). Since the free points of both A and A 
are 1, 2, ..., m, it follows that ya preserves the sets {1, 2,..., m} and 
{m+1,..., f}. 

In to, each square m + u (u = 1, 2, ... , 2k) is at the right-hand end of the 
row containing it and at the bottom of the column containing it. So a moves 
the point m + u weakly to the left. Since the image of m + u under ya is in 
the set {m + 1, ... , f}, the permutation y must then move a(m + u) down 
to the bottom of the column it occupies. Thus, (y2a)(m + u) = m + v, where 
v > u. It follows easily that ya fixes the set {m + 1, ... , f} pointwise. So 
A = A, and y and a individually must fix the set {m + 1, ... , f} pointwise. 

Next, consider ya x y'a' on s . The point j is moved by (ya, y'a ) to 
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ya(j) and its label is changed to (y'a')j. Since (ya, y'a')vA = vA, we have 

(Y2)I = (Y a/)J 

for all j. Thus, ya = y'&, so y = y' and a = a', where these last three 
equalities refer to ya, y, and a restricted to the points of so. Suppose 

E. aAevA = 0. Then E. aAvA = 0, and so all aA = O, as the vA are linearly 
independent. Thus the set of evA is a basis, and this finishes the proof. E 

Lemma 4.4 is the basis for a major simplification of our algorithm. It will 
show that instead of summing over all the terms of the idempotent et x es, we 
can instead work with only those terms which arise from coset representatives 
of Rs and Cs in Rt and Ct . In other words, we can ignore all of the terms 
in e and most of the terms in e . Before stating the final algorithm, we need 

so to 

notation for these coset representatives and for one of the procedures in the 
algorithm. 

Definition 4.5. Let (ai, bi) (i = 1, 2, ..., 2k) be the coordinates of the 
squares of [Al/j]. For each i define sets C(') c Ct and R(') C Rt as fol- 
lows: 

(1) C(i) contains the identity permutation as well as the (ai - 1) involutions 
yi j which exchange the elements of to in squares (ai, bi) and (j, bi). 

(2) R(') contains the identity permutation as well as the (bi - 1) involutions 
ai j which exchange the elements of to in squares (ai, bi) and (ai, j) . 

Let C be the set of all products y(l) ... y(2k), where y(i) E cMi, and let R be 
the set of all products av1) ... a where ?X2k(i) ER() . Note that C and R are 
subsets of Ct and Rt of sizes 

ICI = a1a2 * *a2k IRI = b1b2 .b2k 

Our eventual algorithm will compute the vA, vA entry in Z. , (x) as a sum 

of terms of the form T = ((ya, ,)VA, vA where y E C, a E R. y' E Cso, 

and a' E Rs . For a fixed pair (y, a) c C x R there is at most one pair 

(y', a') E Cs x Rs for which T is nonzero. We next write down a method for 

computing H = y9'', given (y, a), vA, and vA . In the description below we 
will assume that the input is 6 = yavA and 2 = VA. 

Definition 4.6. Let 61 and 62 be m, k partial 1-factors, Define an element 
1(6 ' 2) in the group algebra C Sym(m) according to the following algorithm. 
For each i in the set {1, 2,..., m} find the unique path in 61 U 62 which 
begins at the free point of 61 labelled i and ends at some other free point y . If 
y is a free point of 61 , then H(51, 62) = 0 and the algorithm stops. Otherwise, 
y is a free point of 2 . Let H(51, 52)(i) be the label on y. 
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When this algorithm finishes, we will have either flQ-51, 52) = 0 or else 
H(65 '2) E Sym(m). For 61 a 62 both m, k partial 1-factors and r a standard 
Young tableau of size m, define Fr(61i 62) by 

0 if n-(6l, 5 2) = ?,5 

rr (G'' 52) = the coefficient of H(51, 2) 

in the Young symmetrizer er if H(51, ( 2) E Sym(m). 
Recall that the algorithm COEF discussed in ?3 computes Fr (61 52) from 
1-(65 '2) in no more than E aj(aj + 1) steps, where aj is the length of the 
jth column of r. Also it is easy to see that H(51, 2) together with the number 
of cycles in 61 U 52 can be computed in 0(f) steps (the actual bound is f or 
2f depending on what counts as a step). 

Before giving the final algorithm, we prove one additional fact which will be 
used to increase its efficiency. 

Lemma 4.7. Let y = y ..*.2/(2k) be in C, and aa = a(1)...aU(2k) be in R 
Suppose that for some i, both y(/) and a(i) are not the identity. Then 

SO (yavvA2 5 
V) = O. 

Proof. Fix i such that y(i) = (u, b,) with u < ai and q(i) = (ai, v) with 
v < bi. Let a and ,8 be the labels in the squares (u, bi) and (ai, v) of to. 
The row permutation a moves the label ,8 to the corner square (ai, bi) . Then 
the column permutation y moves the label f8 to the square (u, bi). So in 
yaVA U VA the path beginning at the free point labelled ,B in yavA has length 
0 and ends at the same point of vA which is a free point labelled a. So, 

FI(yavA, VA)(,B) = a. 

But the corner square (ai, bi) does not exist in s0, so H(yavA, VA ) moves 
,B from position (ai, v) to (u, bi) where b1 > Ua. It is easy to see that such 
a permutation cannot be written in the form 9& where y E Cs and a e R . 
So, 

IFSO (YavA2 ,v) =V O * 

Let S denote the set of pairs (y, a) with y - /1)... 2k) E C and a = 

a (1) *** (2k) eR such that a(i) isthe identity whenever y(i) is not the identity. 
Note that the size of S is 

2k 

SI = J7(ai + bi - 1). 
i=1 

Theorem 4.8. The following algorithm computes the Ai, A entry in ZA l (x) 
Algorithm. For each pair (y, a) e S 

(1) Compute Frs (YaVAJ, VA ) 

(2) Compute the number of cycles N in yaVA U VA. 

(3) Add sgn(y)Ji (yavA, VA )XN to the current value of ZA . (x). so AiA 
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Before proving that the algorithm in Theorem 4.8 works, we make some 
remarks on its efficiency. Consider the case A = 654321 and #u = 54321 . The 
size of our original matrix Zm k(x) is a whopping (21)!/48. The submatrix 

Z;,,(x) that we wish to extract is 15 x 15. The six squares of [y/lu] have 
coordinates (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), so the size of S 

6 6 is 6 . Thus each entry of Z ,1(x) is computed with 6 passes through the 
main loop of the algorithm in Theorem 4.8. In practice, this matrix Z ,1(x) 
was computed in about one hour of CPU time on a CRAY-2. 

In general, we must perform the main loop in the above algorithm 
Hl(ai + bi - 1) times. This main loop is carried out in O(f + A aj (aj + 1)) 
steps. So Theorem 4.8 gives a method to compute each entry of Z. ,,(x) in 

O{rJ(a + bil -1) (f+Zaj(aj+ i))} 

steps. In practice, this is efficient enough to work out a large number of cases, 
as the data in the next section will indicate. 

We now sketch a proof of Theorem 4.8. Let e = cs rs be the Young sym- 
metrizer indexed by so. According to Theorem 3.1, the matrix Zm k (X) pre- 
serves the subspace (evA: A is a 1-factor of size 2k). By Lemma 4.4 the 
coefficient of vA in evA is O for i :A j and is IRS IC I for i = j. So the i, j 

entry of Z., , (x) is ( 1/Rs 0 CS ) times the coefficient of vA in Z., , (x) (evA). 

Thus, 

(ZA, (x))A A1 = IR I (evA, vA) 
s0 S0 

1 l sgn (y) , sgn(y') ((ya o , f /)vA VA) 

aERt a ERS 

- S E sgn(y)5s0(yUvA , (yA vl 
yEC aER 

The last equality follows easily from the definition of 17S. Now by Lemma 4.7 
we have 

(ZA(x))AA, = 5 sgn(y)I'so (yaVvAl )(yaVA v, 
(Y ,a)ES 

which completes the proof. 5 

We end this section with an example of how Theorem 4.8 can be used to 
compute an arbitrary entry of Zj (x) . According to Theorem 3.1, there exists 
a matrix similar to Z2 1(x) which breaks up as a direct sum. One of the 
summands corresponds to the irreducible representation 031 ? (2 of Sym(4) x 
Sym(2), and this summand is itself a direct sum of (f31f2) = 3 one by one 
matrices Z31 2(X) . Theorem 4.8 tells us how to compute the matrix Z31 2(X) 

directly. 
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According to Theorem 4.8, the matrix Z31 2(X) is a sum over all pairs (y, a) 
in S. The tableaux to and so are 

to - so= 

/ a' (ya)vA sgn(y)(yav., VA) 
1 2 

id id 1 2 * x 

id (2, 3) 1 1 
2 1~~~~~~ id (1, 3) *~*1 

(1, 4) id 2 1 
2 1~ 

- 
(1, 4) (2, 3) *__ 2 o 
(1,4) (1, 3) 

2 
-1 

Summing the right-hand column gives Z31 2(X) = [X]. 
Some readers may be familiar with the "Meataxe" programs developed at 

Cambridge by R. Parker. These are exceptionally good algorithms for find- 
ing subspaces invariant under a linear transformation T. The algorithms just 
described perform the same function on the matrix Zm k(x) as the Meataxe. 
However, the Meataxe is not suitable for use in this situation because of the 
enormous size of the matrices Zm, k (X) . The Meataxe uses a different approach 
than the algorithms developed in this paper because it is designed for use in a 
very general situation. Since the Meataxe is powerful enough to be applied in a 
general setting, it is limited in the size of the matrix that it can "chop up". Our 
algorithms will handle a much larger size matrix, but they are highly customized 
to the specific situation. 

The algorithm we just described computes Z ,1(x) in the case that [i//l] 
has squares in distinct rows and columns. In the case where [Aljj] does not 
have that property, most of the algorithm goes exactly as before. The important 
difference comes in how we choose vectors v1, .. ., VM (M = m(4u, ,A)) so that 
evl, ... , eVM are linearly independent. We will now describe how to make 
that choice. The choice will use Schensted's correspondence and the following 
interesting property of Schensted's correspondence, originally due to Knuth (see 
[15]). 

Theorem 4.9. Schensted column insertion gives a 1-1 correspondence between 
fixed-point free involutions in Sym(2k) and standard Young tableaux whose 
shape has even column lengths. 

There is an obvious bijection between fixed-point free involutions in Sym(2k) 
and 1-factors on 2k points. So the above theorem gives a bijection between 
standard Young tableaux whose shape is a column-even partition of 2k and 
1-factors on 2k points. 

Now let (R. 5 ) be an arbitrary pair of partitions of f and m,. Recall that 
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the multiplicity m(,u, A) is given by 

m(/"A S gAJ 
l-2k 

q even 

So we need to come up with one vector v. for every Littlewood-Richardson 
filling 0 of [Al/u] having content I an even partition of 2k. The procedure 
to find v. is as follows. 

Step 1: Read from / the corresponding lattice permutation l s, ... 

S2k of content I. 
Step 2: From , ... 

2 2k produce the standard Young tableau t 
which has i in column si for i = 1, 2, ..., 2k. 
Step 3: Use the bijection given by Schensted's correspondence to get a 
1-factor bo from t. . 
Step 4: Define v. to be the m, k partial 1-factor with free points 
1, 2, ..., m, labelled 1, 2, ..., m, respectively, and with an edge 
from m+i to m+j foreachedge {i, j} of 5i. 

Theorem 4.10. For each L-R filling q of [l/#u] having even content, let v. be the 
vector defined by the procedure above. Then the set of evo is linearly independent. 

The vectors v. have many remarkable combinatorial properties owing to 
the fact that q is a Littlewood-Richardson filling. The proof of Theorem 4.10 
is based on a careful analysis of these properties and is long and detailed. It 
produces an abundance of combinatorial information, but has little bearing on 
the general computational method being described in this paper. For the sake 
of brevity we leave it out. 

5. RESULTS OF THE COMPUTATIONS 

We implemented the algorithm outlined in ?4 on the CRAY-I and CRAY-2 
supercomputers at the University of Minnesota. The code was written to take 
advantage of some features of the machines' architectures. The authors wish to 
thank the National Science Foundation for supplying supercomputer time. 

The first table lists the roots of the determinant of Z , (x) for all pairs 
(R. 5u) where A is a partition of 8 or less. Table 2 gives this same information 
for certain larger (A. 5 ) which are particularly interesting. Lastly, Table 3 gives 
the eigenvalues of the matrices Z. ,,(x) for some small cases. 

Some of the roots in this table have stars and some of the rows have check 
marks in the last two columns which are headed "I-extremal" and "pu-extremal". 
These bits of information refer to theorems and conjectures which will be dis- 
cussed in ?6. 
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TABLE 1 

extremal 
Ai U k(E ,,u) Roots of det(ZA ,,(x)) ii 

2 0 1 0 X 
3 1 1 -2 X 

21 1 1 1 X X 
4 0 2 0,-2 X 
4 2 1 -4* 

31 2 1 0 X X 
31 12 1 -2 X 
22 0 2 0, 1 X 
22 2 1 2 

212 12 1 2 X 
5 1 2 -2,-4 X 
5 3 1 -6 

41 1 2 1,-2 X 
41 3 1 -1 X 
41 21 1 -4* 
32 1 2 1,-2 X 
32 3 1 2 
32 21 1 -1 X 

312 21 1 1 X 
312 13 1 -2 X 
221 1 2 1,2 X 
221 21 1 3 X 
213 13 1 3 X X 

6 0 3 0,-2,-4 X 
6 2 2 -4,-6* 
6 4 1 -8* 

51 2 2 0,-4 X 
51 12 2 -2, -4 
51 4 1 -2 X 
51 31 1 -6* 
42 0 3 0,-2,1 X 
42 2 4 0,2, -1, -4 
42 4 1 2 
42 31 1 -2 X 
42 22 1 -4 

412 12 2 2,-2 X 
412 31 1 0 X 
412 212 1 -4 

32 12 2 -1, -2 X 

32 31 1 0 
321 12 2 2,-2 X 
321 2 2 0, 2 X 
321 31 1 3 X 
321 22 1 1 X 
321 212 1 -1 x 
313 212 1 2 X 
313 14 1 -2 
23 0 3 0, 1,2 x 
23 2 2 2, 3 
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TABLE 1 (continued) 
extremal 

i i k(E,7 &,u) Roots of det(ZA,(x)) i 

23 22 1 4 

2212 12 2 2, 3 X 
2212 212 1 4 X 
214 i4 1 4 X X 

7 1 3 -2,-4,-6 X 
7 3 2 -6,-8* 
7 5 1 -1o* 

61 1 3 1,-2,--4 X 
61 3 2 -1,-6* 
61 21 2 -4.-6* 
61 5 1 -3 X 
61 41 1 -8* 
52 1 3 1,-2,-4 X 
52 3 4 2, - , -2, -6* 
52 21 2 -1, -4 
52 5 1 2 
52 41 1 -3 X 
52 32 1 -6* 

512 21 2 1,-4 X 
512 13 2 -2,-4 X 
512 41 1 -1 X 

51 312 1 -6* 
43 1 3 1,-1,-2 X 
43 3 2 2,-i 
43 2 1 2 1, -4* 
43 41 1 0 
43 32 1 -3 X 

421 1 3 2, 1,-2 X 
421 3 2 2,-i 
421 21 4 3, 1,-1,-4* 
421 41 1 3 X 
421 32 1 0 X 
421 312 1 -2 X 
421 221 1 -4* 
413 13 2 3,-2 x 
413 312 1 1 X 
413 213 1 -4* 

321 21 2 1,-1 X 
321 13 2 -1,-2 X 
321 32 1 2 X 
321 312 1 0 

322 1 3 2, 1,-2 X 
322 3 2 3,2 
322 21 2 3,-1 
322 32 1 4 
32 22 1 1 0 x 

3212 21 2 3,1 X 
3212 13 2 3,-2 X 
3212 312 1 4 X 
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TABLE 1 (continued) 
extremal 

i k(E gA,,u) Roots of det(ZA,(x)) q [1 

3212 221 1 2 X 

3212 213 1 -1 X 
314 213 1 3 X X 
314 15 1 -2 X 
231 1 3 1, 2, 3 X 
231 21 2 3,4 
231 221 1 5 X 

2213 13 2 3, 4 X 

2213 213 1 5 X 
215 15 1 5 X X 

8 0 4 0,-2,-4,-6 X 
8 2 3 -4,-6,-8* 
8 4 2 -8* 10 
8 6 1 -12* 

71 2 3 0,-4,-6 X 
71 12 3 -2,-4,-6 X 
71 4 2 -2,-8* 
71 31 2 -6,-8 
71 6 1 -4 X 
71 51 1 -10* 
62 0 4 1, 0, -2, -4 X 
62 2 6 2, 0, -1, -4, -4, -6* 
62 4 4 2,-2,-3,-8* 
62 31 2 -2, -6* 
62 22 2 -4,-6* 
62 6 1 2 
62 51 1 -4 X 
62 42 1 -8 

612 12 3 2,-2,-4 
612 31 2 0,-6* 
612 212 2 -4,-6* 
612 51 1 -2 X 
612 412 1 -8* 
53 2 3 0, -1, -4 X 
53 12 3 -1, -2, -4 X 
53 4 2 2,-2 
53 31 4 0, -2, -3, -6* 
53 51 1 0 
53 42 1 -4 X 
53 32 1 -6* 

521 2 3 2, 0, -4 X 

521 12 3 2,-2,-4 X 
521 4 2 2,-2 
521 31 4 3, 0, -2, -6* 
521 22 2 1,-4 
521 212 2 -1,-4 
521 51 1 3 X 
521 42 1 -1 X 

521 412 1 -3 X 
521 321 1 -6* 
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TABLE 1 (continued) 
extremal 

i j k(E7gAu,7) Roots of det(ZA,(x)) 

513 212 2 2,-4 

513 14 2 -2,-4 

513 412 1 0 X 

513 313 1 -6* 

42 0 4 1, 0, -1, -2 X 

42 2 3 2,-1,-4* 
42 4 2 2, 0 

42 22 2 -3, -4 

42 42 1 -2 
431 2 3 2, 0, -1 X 

431 12 3 2,-1,-2 X 
431 31 4 3,0,0, 2 

431 22 2 1,-4* 
431 212 2 -1,-4* 
431 42 1 2 X 

431 32 1 0 x 

431 412 1 0 
431 321 1 -3 X 

422 0 4 2, 1, 0, -2 X 
422 2 6 3,2,2,0,-1,-4* 
422 4 2 3, 2 

422 31 2 3,-2 
422 22 4 4, 1, 0, -4* 

422 42 1 4 
422 321 1 -1 X 

422 23 1 -4* 

4212 12 3 3, 2, -2 

4212 31 2 3,0 

4212 212 4 4,2,-1,-4* 

4212 412 1 4 X 

4212 321 1 1 X 

4212 313 1 -2 X 

4212 22 12 1 -4* 

414 14 2 4,-2 

414 313 1 2 x 

414 214 1 -4* 

322 12 3 2, -i , -2 

322 31 2 3,0 

322 212 2 0,-1 

322 32 1 4 

322 321 1 1 X 

3212 22 2 2 ,1 

3212 212 2 2,-i 

3212 14 2 -1,-2 
3212 321 1 3 X 

3212 313 1 0 

3221 2 3 3, 2, 0 X 
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TABLE 1 (continued) 
extremal 

i ,j k(EIg ,u,,) Roots of det(ZA ,,(x)) q /u 

3212 12 3 3, 2, -2 X 
3221 31 2 4, 3 
3212 22 2 4, 1 
3221 212 2 4,-1 
3221 321 1 5 X 
3221 23 1 2 X 
3221 2212 1 0 X 

3213 213 2 4, 2 
3213 14 2 4,-2 
3213 313 1 5 X 
3213 212 1 3 X 
3213 214 1 -1 X 
315 214 1 4 X 
315 16 1 -2 

24 0 4 3,2, 1, 0 X 
24 2 3 4,3,2 
24 22 2 5, 4 
24 23 1 6 

2312 12 3 4, 3, 2 
2312 212 2 5, 4 
2312 212 1 6 X 
2214 14 2 5, 4 
22 14 214 1 6 X 
216 16 1 6 X 

TABLE 2. This table contains the roots of det(Z., (x)) 
for some larger values of A and ,u. 

i ,u Roots of det(ZA ,,(x)) 
531 3 2, -1, -2 
531 21 1,-1,-4 
531 13 -1,-2,-4 
531 41 3, 0, -1, -3 
10 0 0,-2,-4,-6,-8 
10 2 -4, -6, -8, -10 
10 4 -8, -10, -12 
10 6 -12,-14 
10 8 -16 

52 1, 1 -1,-2,-3,-4 
642 2 3, 2, 2, 2, 0, 0, 0, -1, -1, -1, -3, -4, -4, -4, -6 
642 4 3, 3, 2, 2, 2,0 ,0 , -2, -2, -3, -3, -8 
642 22 4, 1, 1,0 0 . -3, -3, -4, -4, -4, -6, -6 
4321 321 
5321 421 
6321 521 These six are u -extremal. The roots of 

det(ZA ,,(x)) are exactly the roots predicted 
54321 4321 by the pu -extremal conjecture, Conjecture 6.7. 
64321 5321 
543211 43211 
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6. RESULTS AND CONJECTURES 

In this section we state what is known and what is conjectured about the 
discriminants of the Brauer algebras. The conjectures are based on the com- 
putational evidence that we have been able to gather. These conjectures are 
verified in all reasonably small cases and represent a number of very interesting 
open problems of an algebraic/combinatorial nature. 

A. An important result. Numerical evidence together with two previous results 
(Theorems 6.6 and 6.10 below) led the authors to conjecture that the roots of 
det(Z, ,(x)) are in Z for all A and yu. In algebraic terms, this is equivalent 
to the conjecture that the Brauer centralizer algebras are semisimple except 
possibly at integer values of the multiplication constant x. 

Theorem 6.1 (Wenzl [18]). If x 0 Z, then the algebra A(/) is semisimple. 

Wenzl actually proves that the centralizer algebra of left multiplication by 
P()l in End(A(x)) is isomorphic to A/)I (1) when x Z 7. It follows imme- 

diately that P) is semisimple (for x 0 Z) by induction on f . His proof 
relies on a construction due to Birman and Wenzl (see [1, ?3]), which is in turn 
a generalization of a construction due to Vaughan Jones (see [11]). 

In view of Theorem 6.1, it seems all the more plausible that there is a com- 
binatorial description of the roots of det(Z, ,1(x)). It is known that the roots 
of det(Z, ,(x)) cannot be too large in absolute value. The first such result is 
due to Brauer. 

Theorem 6.2 (R. Brauer [3]). If A is a partition of f and z is a nonnegative 
integral root of det(Z, (x)), then z < f . If z is a negative, even integral root 
of det(Zjt, (x)), then Izi < 2f. 

Proof. In [3], Brauer showed that the homomorphism ((n) from _f n) onto 

EndO(n ) (Tf Rn) is an isomorphism if n is a positive integer greater than or 

equal to f . Since End0(f l)(TfR) is a semisimple ring, it follows that W 
(n) 

is semisimple, so the discriminants det(Z. ,j(n)) must be nonzero. 

Similarly, Brauer showed that the maps (/f2n) from (2n) onto 

EndSP(2nf R) (TTf R2) 

are isomorphisms if n > f (so 2n > 2f). Hence, the discriminants of f2n) 

are nonzero if 2n ? 2f. Since W>x) =V x), the result follows. E 

It is clear from the data in ?5 what bound should hold on the roots of the 
Brauer algebra discriminants. 

Conjecture 6.3. Let z be an integral root of det(Z',Jx)). 
(1) if z is nonnegative, then z < (f -R.); 
(2) if z is negative, then Izi < 2(Al - 2). 
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B. The extremal cases. When considering pairs (R, yu), there are two natural 
extremal cases that arise. One is the case discussed in ?4, which we called ,u- 
extremal. In this case, the squares of [l/#u] are in distinct rows and columns, 
so that for any even partition I we have 

giyq= i;f 
The other extremal case is what we call I-extremal. 

Definition 6.4. The pair (R, yu) is called Ir-extremal if the partition A has ex- 
actly m = Lu I rows of odd length, and these rows have distinct lengths. 

The I-extremal case is in some sense opposite to the yu-extremal case. If the 
pair (R., u) is I-extremal, then there is a unique even shape I for which g,,Q 
is nonzero. This I is obtained by removing one square from each row of A 
which has odd length. For this particular I we have 

gi.q = fy . 
In the I-extremal case we know exactly what the eigenvalues of Z ,1(x) are. 
To state this result, we need an expression due to El Samra and King for the 
dimension of an irreducible Sp(2n, R) module. 

For any partition yu and large enough values of n, there is an irreducible 
Sp(2n, JR)-module indexed by yu, which we will denote by VJ/j. 

Theorem 6.5 (El Samra and King [5]). There is a polynomial d,/(x) with inte- 
ger roots such that whenever n is large enough for ,u to index an irreducible 
Sp(2n, R)-module VJ' , then 

_U d (2 n) 
dim(V28n) JUh 

Here, (H hij) denotes the product of the hook-lengths of ,u. 

King shows that the polynomial d,1(x) is monic of degree m = 1ul1. Because 
of this, one can write d. (x) in the form fly.(x + ry), where the product is 
over all squares y in [,u], and ry is an integer root corresponding to the square 
y . King showed that if y has coordinates (i, j), then 

I i+j-Ai--A-2 if i<j1 
A Ri+Aj-i-j if i ?. 

The following theorem completely determines the roots of the Brauer algebra 
discriminants in the I-extremal case. This result was originally conjectured by 
R. P. Stanley (based on computational evidence). 

Theorem 6.6 (Hanlon and Wales [8]). Suppose the pair (., Pu) is Ir-extremal. 
Then Z. / (x) is an f x f scalar matrix h. / (x)I. The value of the scalar is 

hAj (x) = g. (x)/dU (x) 

where g(x) = rl(i,2j-l)E[I(x + (2j - 1 - i)) 
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For example, let A = 331 and ,u = 21. Then 

d,/(x) = (x - 2)x(x + 2) 

and g,(x) = x(x - 1)(x - 2)(x + 2)(x + 1). So, h',j/(x) = (x - 1)(x + 1). 
The other extremal case is where (R, yu) is yu-extremal. In this case we only 

have a conjecture as to the roots of det(ZA ,(x)). Like the I-extremal case, 
the formula is remarkably simple. 

Before stating this conjecture, it is helpful to compute the degree of 

det(Zu(x)). As noted in ?4, the rows and columns of Zu(x) are indexed 
by the 1-factors on 2k points. So the degree of det(Z, ,(x)) is k times the 
number of 1-factors on 2k points. Since each 1-factor has k edges, one could 
hope to assign one root of det(Z ,(x)) to every edge of each 1-factor on 2k 
points. 

Conjecture 6.7. Let (, , yu) be an yu-extremal pair. Let {(ai, bi): i = 1, 2. 
2k} be the coordinates of the squares of [l/jf]. For each edge e = {i, j} in a 
1-factor on 2k points, let w(e) = (bi - ai) + (bj - aj). Then 

det(Z., .x))= fJ fJ (x +w(e) - 1). 
6 EBO k edges e 

of (5 

As an example of this, let A = 32 and ji = 21. Then the squares of [A/lu] 
are (1, 3) and (2, 2). There is only one 1-factor ( which joins these two 
points, and the unique edge e of a has weight (3 - 1) + (2 - 2) = 2. So this 
conjecture predicts that 

det(Z,,,(x)) = (x + 1), 

which is indeed the case. 
There is overwhelming computational evidence in support of this conjecture. 

Note in ? 5 the two columns marked ,u and I . If the ,u column is checked, that 
means the pair (., ,u) is ,u-extremal. Likewise, if the I column is checked, 
then (., ,u) is I-extremal. Conjecture 6.7 holds for every pair on those lists 
which is ,u-extremal. 

C. Sundaram roots. Certain of the roots of det(Z, ,(x)) are predicted by re- 
cent work of Sheila Sundaram [17]. Her work concerns the centralizer algebras 
EndSP(2nf R) (TfR2n). One of her most elegant results gives an explicit combina- 
torial rule for describing the dimensions of the matrix rings in the Wedderburn 
decomposition of the algebra EndSP(2 R) (TfR2n). The next result follows by 
combining her results with earlier results of the authors. 

Theorem 6.8. Let A and ,u be partitions of f and m, respectively, and let I 
be an even partition. Suppose that q is an L-R filling of [A'/lu'] with content 
I', and suppose that some odd number 2i + 1 occurs below row n + i in 0. If 
2n > l(A') and n > l(u'), then -(2n) is a root of det(ZA,(x)). 
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Roots of det(Z. , (x)) which are forced by Theorem 6.8 will be called Sun- 
daram roots. In the data given in ?5, the Sundaram roots are the starred roots. 

As an example of Theorem 6.8, consider A = 62 and ji = 2. There are two 
Littlewood-Richardson fillings of [2.'/il'] with even content, namely: 

1 11 
2] 2 

Xl= 1 and 32= 
3 

X2 
3 5 
4 6 

If 2n > l(A), then n > 3. It is easy to see that the hypotheses of Theorem 6.8 
are never satisfied if n > 4. However, for n = 3 the hypotheses are satisfied 
for i = 1 , since the 3 in filling 41 occurs below row 4 = (n + i). Hence, (-6) 
is a Sundaram root for the pair (62, 2). 

Theorem 6.8 is difficult to state and to apply, but it is potentially very impor- 
tant. Recall that the number of roots of det(Z, ,(x)) is k times the number 
of Littlewood-Richardson fillings of [Al/u] of even content. Theorem 6.8 gives 
a rule for deriving certain roots of det(Z. (x)) from the way the numbers are 
arranged in these fillings. One could hope for some more general combinatorial 
rule which would allow us to read k roots from each Littlewood-Richardson 
filling of [)Ju] of even content. 

D. Hereditary roots. Perhaps the most striking pattern one sees in the tables of 
roots is the recursive structure given by the following theorem. 

Theorem 6.9 (Hanlon and Wales). If r is a root of det(ZA /l (x)) with multiplicity 

(fAfl ), and if i is obtained from A by adding two squares not both in the same 
column, then the multiplicity of r as a root of det(ZA /l(x)) is at least (fIfil.) 

The proof of this theorem is difficult and involved. For the sake of brevity 
we will publish it elsewhere. However, we give an example of how Theorem 6.9 
can be used. 

Consider (R., u) = (531, 41). We see from Table 2 that the roots of 
det(ZA ,(x)) are 3, 0, -1, -3, each with multiplicity f~fu . We can choose 
four different values of A to satisfy Theorem 6.9. In each case, det(ZA ,jl(x)) 
has exactly one root repeated fAf times. These four choices of A and the 
corresponding roots are: 

A root of det(Z ,,(x)) 

421 3 
43 0 
52 -3 
512 -1 
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So Theorem 6.9 has predicted all four roots of det(ZA ,(x)). 
There is an obvious situation in which the roots of det(ZA ,,l(x)) cannot be 

predicted by Theorem 6.9. This is the case where ,u is a partition of m, and 
A a partition of m + 2. However, the following theorem handles that case. 

Theorem 6.10. Suppose [~Iy/] has size 2 with squares in positions (a, b) and 
(c, d) . Then the unique root of det(ZA j(x)) is 1 + (a - b) + (c - d) . 

Theorems 6.9 and 6.10 combine to yield a recursive method for obtaining 
some of the roots seen in the tables in ? 5. Roots obtained by this recursive 
method are called hereditary roots. There are very few nonhereditary roots for 
small values of f . Below we see a list of the nonhereditary roots for f < 6. 

TABLE 3. Nonhereditary roots for f < 6. 

A , Nonhereditary roots (A', Xi) 

4 q -2 (3, 1) 
2 2 1 (21, 1) 

5 1 -4 (4, 2) 

221 1 2 (2, 2) or (21, 12) 
6 0 -4 (5, 1) 
6 2 -6 (5, 3) 

51 12 -4 (41,21) 
42 2 -1 (41, 3) 

32 12 -1 (32, 21) 
23 0 2 (221, 1) 
23 2 3 (2 1, 21) 

2212 12 3 (221, 21) or (21 , 1 ) 

The following conjecture is consistent with the data we have so far. 

Conjecture 6.11. Let i be a partition of f, and yt a partition of m . Suppose r 
is a nonhereditary root of det(ZA ,, (x)). Then there exists a pair (A yi) with 

A, a partition of f - 1 contained in A and /u a partition of m + 1 containing 
u and such that r is a root of det(ZA ,II (x)) . 

In the list of nonhereditary roots above we have indicated possible pairs 
(1 I 1) which satisfy Conjecture 6.11. At present, the authors have no idea 
why such a conjecture should be true, or how to find the pair (A ,QP) . 
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